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Human olfactory-auditory integration requires
phase synchrony between sensory cortices
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Multisensory integration is particularly important in the human olfactory system, which
is highly dependent on non-olfactory cues, yet its underlying neural mechanisms are not
well understood. In this study, we use intracranial electroencephalography techniques to
record neural activity in auditory and olfactory cortices during an auditory-olfactory matching
task. Spoken cues evoke phase locking between low frequency oscillations in auditory
and olfactory cortices prior to odor arrival. This phase synchrony occurs only when the
participant’s later response is correct. Furthermore, the phase of low frequency oscillations
in both auditory and olfactory cortical areas couples to the amplitude of high-frequency
oscillations in olfactory cortex during correct trials. These findings suggest that phase
synchrony is a fundamental mechanism for integrating cross-modal odor processing and
highlight an important role for primary olfactory cortical areas in multisensory integration
with the olfactory system.
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he human brain has a remarkable capacity for responding

to environmental odors at minute concentrations!'. How-

ever, adaptive olfactory-guided behaviors depend on inte-
grating olfactory and non-olfactory cues; potent smells such as
Limburger cheese may be appetizing only in the appropriate
context. A long-held notion is that the human olfactory system,
with its primitive cortical architecture, is especially dependent
on auditory or visual information, which better allows for spatial
localization and precise identification of the odor sources?.
Indeed, recognition of odors is severely compromised without
multisensory cue integration3. Olfaction may thus provide a
suitable framework to study multisensory processing and how it
confers advantages in understanding, navigating, and perceiving
our environment, allowing for complex engagement with our
surroundings.

Substantial progress has been made in understanding integra-
tion of sensory information in the auditory, visual, and somato-
sensory domains*. Several cortical brain areas have been
identified that may integrate information from multiple primary
sensory areas®, in support of the classical hierarchical model of
multisensory integration. According to this framework, unimodal
inputs converge onto higher multisensory areas, which integrate
multimodal information to guide decision making and behavior®.
The superior temporal sulcus (STS)?, lateral occipital-temporal
cortex8, posterior parietal cortex?, and ventrolateral frontal
cortex!0 have all been implicated in higher cortical multisensory
processing. For example, auditory and visual information relies
on STS to form an integrated representation of an action!l.
However, more recent studies have also found involvement of
primary sensory areas in multisensory processing!?-14, indicating
that multisensory integration may involve more distributed
neural networks beyond classic hierarchical multisensory-specific
areas, including primary sensory cortices!>.

A growing body of evidence suggests a key role for synchro-
nized oscillatory activity during multisensory integration!®17.
Coherent oscillatory firing patterns have been proposed to
mediate integration and information selection across distributed
neural networks!®19. More recent studies have begun to
demonstrate similar mechanisms during multisensory integration
in primates?’, including modulation of phase dynamics in pri-
mary sensory areas by cross-modal inputs.

Here we combined human intracranial electroencephalography
(iEEG) methods with an auditory-word-cued olfactory matching
task to test three main hypotheses about multisensory integration
within the olfactory system. First, data from rodents!4, primates?!,
and humans?? suggest that cross-modal information relating
to odor can modulate olfactory responses in primary olfactory
(piriform) cortex (PC). Therefore, we tested the hypothesis that
odor-predictive auditory cues would generate amplitude increases
in PC in advance of odor stimulation, establishing that auditory
stimuli alone can activate primary olfactory cortex!”. Second, prior
work suggests that synchronized oscillations reflect communica-
tion across distributed networks?>2%. Therefore, we next tested
the hypothesis that successful integration of information from
auditory and olfactory domains would depend on phase syn-
chronization of low-frequency oscillations in auditory and olfac-
tory cortices. Third, phase-amplitude coupling (PAC) has been
suggested to underlie distributed cognitive function, facilitating
local computations3%3770, Therefore, we tested the hypothesis
that synchronized low-frequency oscillations in auditory cortex
would couple with higher frequency oscillations locally in PC as
a potential means of information from one modality impacting
local computations in primary cortex of another modality. We
found that spoken cues evoked phase locking between low-
frequency oscillations in auditory and olfactory cortices prior to
odor arrival. This phase synchrony occurred only when the

participant’s later response was correct. Furthermore, the phase
of low-frequency oscillations in both auditory and olfactory
cortical areas coupled to the amplitude of high-frequency oscil-
lations in olfactory cortex prior to odor arrival during correct
trials. These findings suggest that phase synchrony is a funda-
mental mechanism for integrating cross-modal odor processing
and highlight an important role for primary olfactory cortical
areas in multisensory integration with the olfactory system.

Results

Experimental design. To examine olfactory and auditory
responses in the human brain, we recorded iEEG local field
potentials (LFPs) from seven participants who took part in a
sound-cued odor identification task (Fig. 1a). Each trial began
with a computerized, spoken descriptive word (rose or mint),
followed several seconds later by the presentation of an odor.
The auditory cues and the odor did not overlap. Following
odor sampling, participants indicated whether the odor matched
the cue. Spectrotemporal responses to the auditory cues prior
to odor arrival in auditory and olfactory regions of interest,
including auditory cortical areas surrounding the superior tem-
poral gyrus (STG) and the STS (Fig. 1b) and PC (Fig. 1c), were
examined using time-frequency analysis.

Auditory cues increase delta and theta amplitude in PC. To test
our first hypothesis that odor-predictive auditory cues would
generate power increases in PC in advance of odor stimulation,
we computed spectrograms aligned to the auditory cue onset in
our regions of interest. We found LFP amplitude modulations in
both auditory and olfactory cortical brain regions (Fig. 2a). As
expected, auditory cues induced amplitude increases in auditory
cortex, presumably reflecting the initial encoding of the sounds.
Specifically, LFP amplitudes increased in the delta-theta (1-7 Hz)
and gamma (36-200 Hz) ranges (false discovery rate (FDR)
corrected for multiple comparisons p < 0.05; max z = 14.7, per-
mutation test) (Fig. 2a, b). Maximal amplitude increases in
response to the spoken word cues consistently occurred in STG
in each individual (Figs. 1b and 2a). In agreement with other
studies examining LFPs in auditory cortex?>=27, we also found
LFP suppression in alpha and beta bands (7-30 Hz) (Fig. 2a, b).
Cue-evoked responses were consistently evident in auditory
cortex at the individual level in each participant’s spectrogram
(Supplementary Figure 1a).

As hypothesized, auditory cues also evoked responses in PC
before any odor was presented (FDR corrected p < 0.05; max z =
7.46, permutation test) (Fig. 2a). Specifically, auditory cues
induced LFP amplitude increases in the delta and theta ranges. In
contrast to auditory cortex, cue-evoked PC responses were
restricted to the lower frequency ranges (between 1 and 7 Hz),
with a peak frequency at 4.72Hz (Fig. 2b). There were no
consistent cue-evoked increases in higher frequency oscillatory
amplitudes in PC (>8 Hz). This effect of low frequency amplitude
increases was also present at the individual level in each
participant’s spectrogram (#(6) =11.82, p=2.2le—5, paired t
test; Fig. 2c and Supplementary Figure 1a, b) and at the individual
single-trial level in non-baseline-corrected single-trial amplitude
time series (Fig. 2d). Across participants, the frequency of the
peak response ranged from 1.17 to 5.25 Hz. Auditory cue-evoked
responses occurred first in auditory cortex, followed by PC. Cue-
induced, low frequency responses in auditory cortex peaked at
0.34 s compared to 0.64 s in PC (p < 0.0001, z = 8.81, permutation
test; Fig. 2e, f). Thus auditory stimuli that predicted ensuing odors
evoked responses in auditory cortex, followed by responses in
primary olfactory cortex, all prior to the arrival of the expected
odor. Integration of auditory information with olfactory

2 | (2019)10:1168 | https://doi.org/10.1038/s41467-019-09091-3 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s541467-019-09091-3

ARTICLE

3, 2, 1, Sniff

(Word and odor match?)

| -14-28 s

Fig. 1 Experimental design and electrode locations. a Auditory-olfactory matching task. Each trial began with a computerized, spoken descriptive word

(rose or mint), followed ~5 s later by the presentation of an odor. After smelling the odor, participants verbally indicated whether the odor matched the
word. A trial was considered correct if the participant responded "yes" when the odor matched the cue or "no" when the odor did not match the cue.

b, c Electrode locations. Red dots on individual subject brains indicate electrodes located in the superior temporal gyrus (b) and piriform cortex (c) for each
participant (S1-S7). Blue dots in b show the entirety of implanted parietal grids (S1-S5). S6 and S7 had depth wires implanted with an electrode in

superior temporal gyrus. L left hemisphere

information thus begins prior to the arrival of the olfactory
stimulus. That cue-induced responses in PC were restricted to
the theta range dovetails with recent findings highlighting the
importance of theta band oscillations for odor coding in human
PC?8, suggesting similar frequency characteristics of olfactory
predictive and stimulus-evoked coding.

To confirm that these cue-evoked responses were restricted
to PC and not global, we conducted two additional analyses.
First, we compared cue-aligned spectrograms from PC to those
in the electrodes lateral to PC on the same depth wires, averaged
across participants. We did not find cue-evoked responses in
these electrodes located outside of PC (Fig. 3a). Next, we
conducted follow-up analyses at the individual level, by comput-
ing spectrograms from the signals recorded by every electrode
on every participants’ PC-bound depth wire (Fig. 3b). We
found that cue-evoked low-frequency amplitude increases
were largest in electrodes that were located inside PC compared
to those located in non-olfactory areas (Fig. 3c). At the
individual level, maximal cue-evoked low frequency (1-7 Hz)
responses were significantly larger in PC compared to non-PC
electrodes (#(6) =3.79, p =0.009, paired t test; Fig. 3d). These
data suggest that auditory cue-evoked responses were restricted
to PC electrodes, with no significant effects in nearby non-PC
electrodes.

We next wanted to confirm that cue-evoked amplitude
increases in PC were driven by the cues and not simply induced
by respiration. Nasal inhalation drives LFP activity in PC2%30,
and certain cognitive tasks can modulate respiratory patterns,

including imagination of odors3!l. Together, these facts suggest
the possibility that, if auditory cues induced sniffs, the cue-evoked
activity we observed in PC could be due to sniffing, rather than
the sounds. Thus we analyzed each participant's respiratory data
around the time of the cues in order to confirm that our results
were not driven by nasal airflow (Fig. 3e). We first averaged
the respiratory signals within each participant during 2 s time
windows before and after the auditory cue. We found that neither
the presence of the cue nor the identity of the cue changed
respiration (two-way repeated-measures analysis of variance,
effects of cue or word; all ps>0.39). Across participants, there
was no change in maximal airflow (#(6) = —0.56, p = 0.59, paired
t test) and no change in minimal airflow (#(6) = —0.67, p = 0.53,
paired t test) during the 2 s window before and after the cues.
To be sure that the cue did not induce a change in the size of
the nasal inhalation following the cue, even if it occurred outside
of the 2 s time window, we compared the size of breaths
preceding the cue to the size of the next breath following the
cue. Breaths taken following cues did not differ from those
taken before the cue in terms of peak inhale airflow (#(6) = 1.17,
p=0.29, paired t test), peak exhale airflow (#(6)=—0.59,
p =0.58, paired ¢ test), or inhale volume (#(6) =1.53, p=0.18,
paired t test). Our analysis confirmed that the auditory cues did
not change participants’ respiratory behavior, and therefore our
results were not driven by nasal airflow.

Phase synchronization between auditory cortex and PC. Par-
ticipants were required to match the odors to the spoken words,
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Fig. 2 Cue-induced local field potential (LFP) amplitude changes. a Group-level auditory-cue-aligned spectrograms were computed from auditory cortex
(AUD) and piriform cortex (PC) LFPs. Areas of statistical significance are outlined in black (false discovery rate (FDR) corrected p < 0.05, permutation
test). b Frequency of maximal cue-evoked amplitude modulations in AUD (red) and PC (blue). The average z scores over a time window of [0—1]s
following auditory cues are plotted as a function of the frequency. Arrows indicate peak frequencies. The vertical black dotted lines indicate the FDR-
corrected threshold for statistical significance in a. ¢ Individual-level analysis of auditory cue-induced responses in PC. Pre-cue and post-cue average
low frequency (1-7 Hz) amplitudes are shown for each participant (51-S7). d Single-trial theta (3-5Hz) amplitude time-series for each individual
participant (S1-S7). On each plot, trials are sorted by latency-to-peak. These plots show raw data that has not been baseline corrected. e Percentage
of signal change at peak response frequency (3-5Hz) in AUD (red) and PC (blue). Arrows indicate the time from auditory cue onset (t =0) to the
peak response. f Peak latency difference between AUD and PC. The histogram (blue bars) indicates the null distribution of permuted differences between
AUD and PC latencies. The red line indicates the normal curve fit. The vertical black line represents the actual (non-permuted) peak latency difference
(PC—AUD), revealing a statistically significant difference (p <0.0001, z= 8.81, permutation test)
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Fig. 3 Control analyses. a Auditory cue-induced responses in piriform cortex (PC) were anatomically specific. Cue-aligned spectrograms for electrodes
inside and lateral to PC. Black-outlined clusters indicate statistical significance (false discovery rate corrected p < 0.05, permutation test). Dashed lines
indicate the onset of the auditory cue. b Location of PC-bound depth wires for all participants overlaid on the Montreal Neurological Institute standard
brain. Each dot represents one electrode along the depth wire for each participant. One patient who had right hemisphere placement of the PC depth wire
was mirrored to the left hemisphere. ¢ Spatial distribution of auditory cue responses showing a hot spot in PC. Hotter colors represent larger response
magnitudes that were determined by the peak response following auditory cues, computed separately for all electrodes along PC-bound depth wires for all
participants. d Responses in depth wires located inside PC were consistently larger than those located outside of PC. Values are shown for each participant
(S1-S7) and were compared using a two-tailed paired t test across participants (t(6) = 3.79, p = 0.009). e Auditory cue-induced responses in PC were not
driven by respiratory modulations. Auditory cues did not modify respiratory behavior. Raw respiratory signals were aligned to the auditory cue and then
averaged, showing no change in breathing following auditory cues (yellow line). Respiratory data aligned to all inhale onsets over the entire experiment
(blue line) and the subset of inhale onsets that occurred after the auditory cue and before the odor (red line), show that the cues also did not impact the
subsequent breath. Gray shaded areas surrounding each line indicate standard error over participants. The panels on the right show individual participants’
maximal and minimal airflow values during the pre- and post-cue time windows (top), individual participants’ inhale and exhale peaks (bottom left

and middle), and individual participants’ inhale volumes for breaths taken before and after the cues (bottom right); n.s. indicates p > 0.05, two-tailed
paired t test

and integration of information from the two modalities was thus
required for task performance. Low-frequency oscillations have
been suggested as a mechanism of functional connectivity across
distributed neural networks32. Based on this, we hypothesized
that, following the cue and prior to the presentation of the odor,
low-frequency LFP oscillations in auditory and olfactory cortices
would become phase locked. To this end, we estimated the
strength of phase locking across frequencies from 1 to 30 Hz
between auditory cortex and PC following the cue, using the

Phase-Locking-Value index (PLV)33 (Fig. 4). At the individual
level, we found consistent, robust auditory-PC phase locking
following the cue in each participant in the low-frequency ranges
(FDR corrected p < 0.05; max Rayleigh’s z = 30; Fig. 4a). A paired
t test revealed that post-cue PLV is statistically higher than pre-
cue baseline PLV (#(5) = 6.44, p = 0.0013; Fig. 4b). These results
confirm that olfactory-relevant auditory cues induced phase
synchronization between PC and auditory cortex prior to the
arrival of the odor.
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Fig. 4 Auditory cue-induced phase synchronization between auditory and olfactory cortices. a Raw phase-locking value (PLV) computed between auditory
cortex (STG) and piriform cortex (PC) is shown for each participant (51-S2, S4-S7). Black outlined areas indicate statistically significant clusters

(false discovery rate (FDR) corrected p < 0.05, Rayleigh test). The dashed line indicates the onset of the auditory cue. Note that we did not compute
PLV for S3 because this participant did not complete enough trials for individual-level PLV analysis (see Methods). b Auditory cue-induced PLV increases
at the individual participant level. PLV strength before and after auditory cues was compared using a two-tailed paired t test (t(5) = 6.44, p = 0.0013).
¢ Phase synchronization between primary auditory and olfactory cortices was stronger during correct compared to incorrect trials. PLV is shown computed
for correct (top) and incorrect (bottom) trials separately. Dashed lines indicate the onset of auditory cues. d Phase synchrony was stronger when

the participant's response was correct. Direct statistical comparison between correct and incorrect trials is shown in the upper panel. Black outlines
indicate statistically significant clusters (FDR corrected p < 0.05, permutation test) and gray outlines indicate statistically significant clusters at uncorrected
p <0.05. The lower panel shows the averaged PLV time series at the peak frequency. Gray shaded areas denote the standard error obtained through
bootstrapping. e PLV strength predicts future accuracy. Bootstrapped PLV values are shown plotted against the mean accuracy of the subset of trials
included in each repetition. The strength of PLV for each subset of trials strongly correlates with the future behavioral accuracy (r=0.943, p = 0.000043,
Pearson's correlation). f Auditory cue-induced PLV is maximal between PC and STG. All parietal electrodes for all participants are shown as dots overlaid
on the standard Montreal Neurological Institute (MNI) brain. On the left, each dot represents one electrode, color-coded by the strength of cue-induced
PLV between PC and that particular electrode; greener colors indicate stronger PLV. On the right, raw PLV values are shown interpolated into a heat
map overlaid on the standard MNI brain surface; warmer colors indicate stronger PLV

If auditory-PC phase synchronization is important for
information transfer between auditory and olfactory cortices,
we would expect that it should be stronger during trials when
cross-modal information was successfully integrated. Therefore,
we tested the hypothesis that auditory-PC phase locking was
mainly present during trials in which the participant’s response
was correct. We pooled all trials (252 correct and 71 incorrect)

from all participants and computed PLV for correct and incorrect
trials separately. To account for the difference in the number
of correct and incorrect trials, we used a resampling method. In
each bootstrap repetition, 71 out of the 252 correct trials were
resampled without replacement, and the PLV was calculated from
this subset of trials. The average PLV over 200 repetitions was
taken as the PLV for correct trials. Visual inspection of these
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PLV maps revealed that low frequency (1-3 Hz) auditory-PC
phase synchronization was only present during correct trials
(FDR corrected p < 0.05; max Rayleigh’s z=12.5; Fig. 4c). In a
direct statistical comparison between the two conditions, cue-
evoked phase locking was significantly stronger during correct
trials, compared to incorrect trials (FDR corrected p <0.05;
max z = 4.27, permutation test; Fig. 4d).

While the finding of stronger PLV during correct compared
to incorrect trials supports the hypothesis that multisensory
integration requires phase synchrony, this analysis would be
strengthened by moving beyond the binary classification of trials.
If phase synchrony between auditory and olfactory cortices is
required for integration, we would expect to find that the strength
of PLV should predict the accuracy of the response. To test
this hypothesis, we used a bootstrapping technique, since PLV is
a cross-trial measure and cannot be computed at the single-trial
level. We pooled all trials (correct and incorrect), from all
subjects, into a single vector from which we randomly selected
a subset of trials, and we repeated this selection 10,000 times.
On each repetition, we computed the PLV for that particular
subset of trials, and we computed the proportion of correct
trials within that subset. This allowed us to ask whether the PLV
strength for a given subset of trials could predict the behavioral
accuracy for that subset of trials. We found a strong positive
correlation between PLV strength and behavioral accuracy (r =
0.943, p = 0.000043, Pearson’s correlation; Fig. 4e). To assess the
stability of this result, we performed the bootstrapping analysis
1000 additional times, generating a distribution of correlation
r values. We found that the result was stable across repetitions,
confirming the statistical significance of the correlation (95%
confidence interval: [0.9407, 0.9502], bootstrapping method).
These findings strongly suggest that oscillatory phase synchroni-
zation between cross-modal sensory cortices, prior to the arrival
of an odor, is a marker of successful multisensory integration
between the auditory and olfactory systems.

Thus far, we focused our phase-synchronization analysis on
coupling between PC and the auditory cortical electrode that
showed the strongest response to the spoken words. Auditory
cortex comprises a broad area of the STG and the STS, and studies
indicate functional heterogeneity across these areas®*. To test
the spatial specificity of the observed phase synchronization
between auditory cortex and PC, we computed PLV between PC
and all electrodes in the auditory cortex including STG and STS
in all seven of our participants. We found that PLV was maximal
in areas corresponding to voice-selective auditory cortex3*
(Fig. 4f), with a hot spot of maximal PC phase synchronization
roughly corresponding to Brodmann areas 41 and 42.

Taken together, these data highlight the importance of primary
olfactory cortex in the integration of cross-modal information
within the olfactory system. They further suggest that oscillatory
phase synchronization may be an important component of
olfactory multisensory integration and corroborate a large body
of literature indicating the importance of oscillatory neural
activity in olfactory processing?8-3>.

PAC between auditory cortex and PC. Phase synchronization of
low-frequency oscillations between auditory and olfactory cor-
tices is consistent with the established idea that low-frequency
oscillations underlie functional connectivity across distributed
networks!6. However, high-frequency oscillations are thought to
reflect local computations, including sensory processing. Cou-
pling between the phase of low-frequency oscillations and
the amplitude of higher-frequency oscillations is thought to be
involved in cognitive processing, thus providing a means by
which network coupling can impact local computations°. In line

with this, PAC has been linked to attention and learning®’.
Though little is known about PAC in olfactory brain areas, a
recent study suggests that, during rest, there is inherent ongoing
coupling between theta phase and beta amplitude in human PC30.
This suggests that PAC in these particular frequency bands may
be of particular importance for odor coding in the human brain.
To determine whether odor-predictive cues modulate theta-beta
coupling, we computed comodulograms of the modulation index
(MI)38 with low-frequency phase ranging from 1 to 13Hz
and high-frequency phase ranging from 13 to 200 Hz (Fig. 5a).
We found two major clusters of PAC within PC, including
delta-gamma and theta-beta, both of which have been previously
reported in human PC30.

To determine whether PAC in these frequency ranges was
affected by the auditory cues, we computed comodulograms
separately for time windows preceding and following cues
(Fig. 5b). Interestingly, a comparison of MI between pre-cue
(—5-0's before cue) and post-cue (0-5s after cue) revealed that
the cues strongly increased theta-beta and theta-gamma coupling
within PC (FDR corrected p < 0.05; max |z| = 14.36, permutation
test). There was also a modest decrease in low delta-low gamma
coupling, suggesting that auditory cues might also have increased
the frequency of maximal PAC in PC.

We next hypothesized that this cue-induced PAC in PC might
be related to coupling with low-frequency oscillations in auditory
cortex, which were phase-locked to the same in PC, suggesting
that, beyond our PLV findings, auditory responses could impact
the timing of higher-frequency oscillations in PC as well. To
test this hypothesis, we computed the MI between the phase of
low-frequency oscillations in auditory cortex and the amplitude
of high-frequency oscillations in PC. This analysis revealed
coupling between the phase of auditory theta oscillations and
the amplitude of PC beta oscillations and between auditory
delta phase and PC gamma amplitude (Fig. 5¢). However, when
examining these effects following the presentation of cues,
we found that only the auditory theta and PC beta coupling
was increased during the post-cue time window (FDR corrected
P <0.05 max |z| =7.25, permutation test, Fig. 5d). These data
suggest that cross-modal cues induce cross-regional PAC that
increases the strength of existing intrinsic coupling dynamics in
olfactory cortex.

We found theta-beta coupling both within PC and between
auditory cortex and PC. We next asked whether both of these
forms of PAC were related to integration during the task or
whether one of them dominated in terms of task relevance. We
thus computed MI using correct and incorrect trials separately,
for both types of coupling (within PC and between cortices). We
found that only cross-regional PAC was stronger during correct
versus incorrect trials (FDR corrected p <0.05, max |z]| = 5.03,
permutation test, Fig. 5e), with no significant differences between
correct and incorrect trials for within-PC coupling (FDR
corrected p>0.05, max |z| =3.17, permutation test, Fig. 5f).
These results suggest that the modulation of PC beta oscillations
by STG theta oscillations is important for integration of auditory
and olfactory information and highlight an important role for
cross-regional PAC in multisensory integration.

Taken together, these data suggest that olfactory-relevant
spoken word cues induce a phase shift in low-frequency PC
oscillations and also modulate the amplitude of PC beta
oscillations, thus impacting the timing of local computations
in olfactory cortex. Notably, we found no differences in overall
LFP amplitude in any frequency between correct and incorrect
trials (FDR corrected p>0.05, permutation test), suggesting
that phase dynamics, rather than LFP amplitude modulations,
are related to the cognitive demands of integrating auditory and
olfactory information.
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Fig. 5 Auditory cues induced cross-frequency coupling. a On the left, group-level comodulograms of within-piriform cortex (PC) cross-frequency coupling
are shown. Values on the plot represent the modulation index (MI) for each phase amplitude pair (see Methods). On the right, phase-amplitude
distributions of the maximal modulatory frequency are shown (corresponding to red and blue circles on the left panel). b Auditory cue-induced changes in
phase-amplitude coupling in PC. In the left and middle columns, comodulograms computed from pre-cue ([—5, O] s) and post-cue ([0, 5] s) time windows
are shown separately, with the difference between the two on the far right. ¢ On the left, group-level comodulograms of between auditory (AUD)-piriform
cross-frequency coupling are shown. Values on the plot represent the Ml for each phase amplitude pair (see Methods). On the right, phase-amplitude
distributions of the maximal modulatory frequency are shown (corresponding to red and blue circles on the left panel). d Auditory cue-induced changes in
phase-amplitude coupling between AUD and PC. In the left and middle columns, comodulograms computed from pre-cue ([—5, 0] s) and post-cue
([0, 5] s) time windows are shown separately, with the difference between the two on the far right. e, f Phase-amplitude coupling between AUD and PC
amplitude is stronger during correct trials. Comodulograms computed separately for correct and incorrect trials for both within-PC coupling (left) and
AUD-PC coupling (right) are shown. Increased modulation during correct compared to incorrect trials was only evident for AUD-PC coupling in the
theta-beta ranges. In all instances, comodulogram z scores were corrected for multiple comparisons using false discovery rate (p < 0.05, permutation test)

Discussion
Information about the surrounding environment is typically
obtained from more than one sensory system, requiring our
brains to integrate multimodal stimuli into a coherent sensory
experience. This is especially important in human olfaction, a
system strongly dependent on supporting multisensory input.
Here we addressed an unresolved question: How does the human
brain enable odor identification by integrating multisensory cues?
We found that multisensory integration with the olfactory system
relies on low-frequency phase shifts in primary olfactory cortex.
Following spoken word cues, low-frequency oscillations in pri-
mary olfactory cortex became synchronized with those in voice-
activated auditory cortex, prior to odor arrival. Although the
auditory words presented in our study did not contain predictive
information about the identity of the future odor, they did
carry vital information necessary for proper performance of
the olfactory perceptual decision. Thus information from the
auditory system was required in order to make an olfactory
perceptual decision. In this sense, integration was necessary for
completion of the task. Our data suggest that phase dynamics
across distributed networks, including primary sensory areas,
reflect underlying olfactory sensory integration in the human
brain. Importantly, olfactory-auditory phase synchrony was
associated with accurate performance on the cross-modal task.
An important aspect of our study was that the auditory and
olfactory stimuli did not arrive simultaneously; rather, auditory
cues preceded the arrival of the odors. Thus we were able to
examine connectivity between auditory and olfactory cortices—
and activity in olfactory cortex—prior to the arrival of the odor,

allowing us to isolate the effects of integration from responses to
odor stimuli. Given this experimental design, our findings relate
not only to multisensory integration but also to predictive coding
theory. Our data examine predictive coding from a cross-modal
view point, which is consistent with typical real-world experience,
where a stimulus from one modality frequently predicts the
arrival of a stimulus from a different modality. For example,
the sight of lightning predicts the coming sound of thunder
or the sound of a clicking stove predicts the arrival of the smell of
natural gas. These common, real-world situations require both
multisensory integration and predictive coding. Thus our data
suggest that top—down influences on human olfactory cortex may
be mediated by phase synchronization as well.

Most research on multisensory interactions in the olfactory
system has been conducted in rodents, with less understanding
of these mechanisms in the human brain. In rodents, it has been
shown that both gustatory®® and auditory!# stimuli modulate
single-unit activity in primary olfactory areas. Tastants applied to
the tongue induce responses in rodent PC%0, and auditory tones
induce responses in the rodent olfactory tubercle!%. In humans,
functional magnetic resonance imaging (fMRI) studies have
shown that visual and auditory stimuli that are linked to odors
can activate PC?241:42, but the slow nature of the hemodynamic
blood-oxygen-level-dependent signal prohibits full understanding
of the timing and frequency composition of these responses.
Specifically, fMRI does not allow characterization of oscillatory
phase dynamics across different sensory cortices. By using
iEEG methods, we were able not only to show that PC plays a
role in multisensory integration but also to characterize the neural

8 | (2019)10:1168 | https://doi.org/10.1038/541467-019-09091-3 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

oscillatory dynamics involved: Phase synchrony between auditory
and olfactory cortical oscillations enhances integration of infor-
mation across the two sensory systems.

Our results directly support the emerging view that multisensory
integration is reliant not only on classic hierarchical multisensory
areas?? but also on phase synchronization and resetting across
distributed oscillatory networks*3, further emphasizing an impor-
tant role for primary sensory areas in this process. In rodents
and monkeys, several studies have found primary sensory cortical
involvement in multisensory integration of visual, auditory,
gustatory, and somatosensory information?044-46. Such prior
results and those of the present study support the postulation
that multisensory integration involves a distributed network with
multiple redundant pathways>*” and that oscillatory phase
synchrony may play a key role in these mechanisms*¥->1. Our
finding that oscillations in primary olfactory cortex become
synchronized with oscillations in auditory cortex is consistent with
both of these postulations.

Our finding of synchronized low-frequency oscillations in
olfactory and auditory cortex is in line with a large body of
research indicating low-frequency phase synchrony as a means of
coupling across neural networks®2-2>3, These synchronized low-
frequency oscillations, in turn, modulated higher-frequency
oscillations in PC, including those in the beta and gamma
range. Low-frequency phase modulation of gamma amplitudes in
human PC is of particular interest, given a previous study sug-
gesting a lack of systematic odor-induced gamma amplitude
increases during an odor detection task?8. In agreement with this
study, we did not find consistent gamma amplitude increases in
response to auditory cues. However, we did find that gamma
amplitudes were modulated by low-frequency phase dynamics in
primary auditory and olfactory cortices.

One limitation of our study is the use of data from patients
with temporal lobe epilepsy. While human electrophysiology data
can only be obtained from olfactory areas in patients requiring
this type of surgery, an important consideration is whether these
patients are good representatives of normal auditory-olfactory
processing. These patients sometimes show a mild deficit on
olfactory testing, as well as potential atrophy of the PC in patients
with medial temporal sclerosis. Surgical epilepsy patients are the
only setting where this study could be ethically conducted, but we
openly acknowledge that the disease pathology is a potential
limitation. We took several steps to minimize the impact of these
limitations on our data. No patient enrolled in our study had
clinically noted abnormal volume or functional activation of PC.
All patients were able to reliably identify and distinguish between
the odors used in the task. Importantly, no participant had a
seizure focus zone comprising auditory or olfactory cortex.
Finally, any trials during which epileptiform activity was present
were removed from further analysis. Another limitation of
intracranial techniques is limited spatial coverage. As a result of
this, we included one participant whose auditory electrode was

located in the right (language non-dominant), as opposed to
the left hemisphere. We included this participant in our
analyses despite the dominance of the left hemisphere in language
representation, because though reduced, the right hemisphere is
also involved in language processing®®. Importantly, results
obtained from the electrode implanted on the right side are
consistent with those obtained from the electrodes implanted
on the left side.

In sum, the present results suggest oscillatory dynamics
reflecting a mechanism that enables the human brain to accu-
rately match an odor to a preceding auditory cue. While there is
increasing evidence of multisensory integration in early stages
of sensory neocortical pathways, our study provides evidence of
early integration between a neocortical (auditory) and archicor-
tical (olfactory) system in humans, suggesting early evolution
of such multisensory convergence. Apart from our objectives
to reveal the multisensory-integrative processing capacity of the
evolutionarily preserved olfactory system, understanding such
processes may also be of clinical research interest, given that
odor identification deficits constitute a very early marker of
generalized cognitive impairment and dementia among older
individuals®>->8. As we learn more about the specific frequencies
that enable olfactory system computations, future work may
benefit from the present findings and facilitate a better under-
standing of how these cross-modal circuit functions are
perturbed by neurodegeneration and neural pathology.

Methods
Participants. Seven surgical participants (four women) with medically resistant
epilepsy participated in this study. Inclusion criteria for this study included
the clinical need for surgical implantation of electrodes into both olfactory and
auditory cortices and the ability to identify and distinguish the odors used in this
study. Any patient whose seizure focal zone included PC or a lesion in PC was
excluded from the study.

The Institutional Review Board of Northwestern University approved the study,
and all patients gave written informed consent to participate.

Table 1 summarizes the patients’ demographic information. Their ages at
surgery ranged from 25 to 36 years (average: 33 years). The average duration
of epilepsy is 9.86 years (ranging from 2 to 36 years).

Behavioral task. Each trial began with a computer-generated spoken cue con-
sisting of either the word rose or mint. Sounds were presented using PsychTool-
box>°-6! and Matlab (MathWorks Inc., Natick, MA, USA), via a laptop placed in
front of the participant. On an average of 4.8 s (ranging from 3.3 to 7.2 s) following
the cue, the subject smelled the pure odor of rose (essential oil) or mint (methyl
salicylate) delivered through opaque plastic squeeze bottles placed under the
subject’s nose by the experimenter. The participant then indicated whether or not
the odor matched the cue by answering yes or no. A synchronization signal was
sent to the iEEG recording system (Nihon Kohden) via Matlab using digital output
from a data acquisition device (USB-1208F, Measurement Computing) in order to
mark the cue onset, the respiratory cycle corresponding to the sniff onset, and the
participants’ response. Participants completed between 48 and 64 trials, except for
1 participant who completed only 16 trials due to clinical constraints. The average
inter-trial interval was 21.3 s, ranging from 14 to 28s, across participants. The
average performance on the task was 73.3% correct (S1: 79.69%, S2: 75.56%, S3:
31.25%, S4: 91.07%, S5: 100%, S6: 87.5%, S7: 46.88%), which means the response
was yes while the odor matched with the sound cue or no if they were not matched.

Table 1 Patient demographics
Patient Gender Age (years) Handedness Epilepsy duration (years) Epileptogenic zone Brain MRI
S1 M 32 Right 10 Left basal temporal Normal
S2 F 27 Right 5 Left mesial temporal Left MTS
S3 M 47 Left 2 Left temporal lobe Normal
S4 F 29 Right 7 Left temporal lobe Normal
S5 F 25 Right 3 Left mesial temporal Normal
S6 F 36 Right 36 Left mesial temporal Left MTS
S7 M 34 Right 6 Right mesial temporal Normal
MRI magnetic resonance imaging, MTS mesial temporal sclerosis
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We found no difference in performance between the first (mean + standard error:
73.98% +9.12%) and second (72.58% + 10.72%) half of trials (z=0.40, p = 0.69,
two-tailed Wilcoxon signed-rank test). The performance was higher in cue-odor-
matched trials (85% + 7.08%) than nonmatched trials (58.17% + 15.05%) (z = 2.20,
p =0.028, two-tailed Wilcoxon signed-rank test). However, our analyses were
focused on the time period prior to odor delivery, at which time whether the odor
matched the cue was still unknown.

Respiratory and iEEG recordings. The respiratory signal was recorded using a
piezoelectric pressure transducer (Salter Labs Model #5500) attached to a nasal
cannula at the participant’s nose and a breathing belt placed around the abdomen.
The nasal cannula signal was used for respiratory analysis, as it has a faster
deflection during sniffing®?. The respiratory signal was z score normalized and
respiratory features including inhale onset, peak inhale/exhale airflows, and inhale
volume were calculated using BreathMetrics® for each patient.

iEEG data were recorded using the clinical Nihon Kohden system currently
in place at Northwestern Memorial Hospital. The sampling rate for each
participant was determined clinically and ranged from 500 to 2000 Hz across
participants, with an online high-pass filter of 0.08 Hz. The reference and ground
consisted of a surgically implanted electrode strip facing toward the scalp.

Electrode locations were determined using pre-operative structural MRI scans
and post-operative computed tomography (CT) scans using the FMRIB Software
Library’s (FSL) registration tool flirt04%°, Individual CT images were registered
to MRI images using a degree of freedom of 6 with a cost function of mutual
information, which was followed by an affine registration with a degree of freedom
of 12. Individual MRI images were registered to a standard Montreal Neurological
Institute (MNI) brain (MNI152_Imm_brain included in FSL) with a degree of
freedom of 12. Finally, the transformation matrices generated above were
combined to create a transformation from the individual CT image to standard
MNI space.

The electrodes were localized by thresholding the raw CT image and calculating
the un-weighted mass center of each electrode. To account for brain shifts, grid
electrodes in the auditory cortex were projected to individual brain surfaces using
the method proposed by Yang and colleagues®. Finally, the coordinates were
converted to standard MNI space using the transformation matrix generated above.

Though we analyzed spectrograms from all electrodes on the PC depth wires
and all electrodes on the parietal grids, electrodes corresponding to those shown in
Fig. 1 were selected by the following procedure. PC: For each subject, we first
determined which subset of electrodes was anatomically located inside PC. This
typically included between 1 and 3 electrodes. For the subjects who had only a
single electrode in PC, we used that one. For subjects with multiple electrodes
within PC, we chose the one that was closest to the center of PC. Notably, we also
analyzed all piriform electrodes separately with similar results. STG: For each
subject, we computed the amplitude of gamma oscillations following presentation
of the auditory cue, and we used the electrode that showed the largest increase
in gamma amplitude. Notably, this resulted in an electrode located in STG for each
participant. We also analyzed all electrodes on the parietal grid for each participant,
which can be seen in Fig. 4.

Time-frequency analysis of iEEG data. iEEG data were first low-pass filtered at
235 Hz followed by removal of 60 Hz line noise and its harmonics using band-stop
filters at a bandwidth of 4 Hz. All signal filtering in this study was performed using
two-pass zero phase finite impulse response filter as implemented in fieldtrip unless
stated otherwise. The data were down-sampled to a sampling rate of 500 Hz and re-
referenced to a common average. Then the time series was band-pass filtered at 100
log-spaced frequencies (1-200 Hz), with the bandwidth logarithmically increased
from 2 to 50 Hz. The amplitude of the band-pass filtered signal was extracted using
Hilbert transform and smoothed with a moving average filter kernel of 10 ms.
To evaluate event-related amplitude changes, the amplitude time series was
segmented into epochs from —0.55 to 1.5 s relative to the auditory cue. For each
participant, all trials were visually checked and those trials with large artifacts were
removed from further analysis. Table 2 summarizes the number of good trials for
each participant. The spectrogram was calculated by averaging the amplitude

Table 2 MNI coordinates of regions of interest

Patient Superior temporal gyrus Piriform cortex No. of trials
S1 —68.6, —14.7, 7.9 —21,19, =225 53

S2 —69.2, —19.3, 13 —15.6, 7.1, —=29.4 50

S3 —69.2, —14.2, 8.1 —-75,-43,-139 N

S4 —69.8, —32.4, 11.9 —19.7, 0.4, —18 46

S5 —65.3, -17,17.4 —14.8, —1.8, —182 64

S6 —67.6, —18.3, —0.1 —26.8,35, —24.6 41

S7 69.5, —21.1,15.7 20.2,7, =279 58

MNI Montreal Neurological Institute

epochs across trials at each frequency, which was further normalized by subtracting
a baseline ([—0.55, —0.05] s relative to cue onset) average. Note that the percentage
of signal change of a specific frequency band can be calculated as 100 x (x — mean
(Xbaseline) )/ MeaNn(Xpqseline)> Where x is the averaged amplitude time series.

The statistical significance of the amplitude change was tested using a
permutation method®”. In each permutation, real events were shifted in time by a
random amount while maintaining the relative distance between events. The
modulus of the length of the time series was calculated to ensure that all shifted
events were valid. Then one mean amplitude value was calculated by averaging
across these events. After repeating this procedure 10,000 times, we obtained a
null distribution of baseline amplitudes. To calculate the z-map of the real
spectrum, we divide it by the standard deviation (estimated using Matlab normifit.
m) of this null distribution. Two-tailed p values were also computed from the
z-map for multiple comparison correction using the FDR method®.

To construct a group-level z-map for each region, we visually checked the z-
map of all electrodes for each participant and chose the most responsive electrode
for each region of each participant (Fig. 1; Table 2). The amplitude time series were
obtained for each frequency and each participant and concatenated across
participants for each region of interest. To account for inter-individual difference
in the amplitude of raw signal, raw time series were z score normalized before
concatenating. The z score spectrogram of the concatenated time series was
calculated as described above.

Of note, inter-individual response peak frequencies can be identified from
individual z-maps. To quantify cue-induced amplitude changes at the peak
frequency, the baseline average amplitude and the maximal amplitude after cue
were retrieved and converted into power (decibel transformed). Then the difference
between baseline and post-cue maximal was tested using a two-tailed paired ¢ test.

The peak frequency of the group-level STG and PC responses were identified by
averaging the z score over a time window of [0, 1] s relative to auditory cue onset.
Then the percentage of signal change of a narrow frequency band that enclosed
both the peak frequencies of STG and PC was calculated. The maximal time point
of the percentage of signal change was calculated as the peak latency for STG and
PC separately. To test the significance of the peak latency difference between
STG and PC, we used a permutation method. For each permutation, the trial labels
for STG and PC were randomly shuffled and the permuted peak latency difference
was calculated and retained. A distribution of permuted peak latency difference
was obtained by repeating the above procedure 10,000 times resulting in a null
distribution of peak latency difference. The mean and standard deviation of this
distribution was obtained (Matlab’s normfit.m), from which a z score of the real
peak latency difference was calculated.

Phase locking value analysis. To examine auditory cue-induced changes of the
coupling between the auditory and PCs, we calculated cross-trial PLV between STG
and PC. PLV is a measure of the consistency of the phase difference at a specific
frequency and time between two regions over trials (Supplementary Figure 2).
To obtain the phase time series, we band-pass filtered the raw time series between
1 and 30 Hz in 50 log-spaced frequencies (bandwidth: 2 Hz) for each region. Then
the phase time series were obtained using the Hilbert transform method. Phase
difference time series was segmented into [—0.55, 1.5] s epochs relative to cue
onset. PLV together with the Rayleigh’s z score and p value were calculated at
each time-frequency point using CircStats toolbox®’.

To directly evaluate cue-induced PLV changes at the individual level, we
extracted the maximal low-frequency (<7 Hz) PLV and baseline averages at the
corresponding frequency. Then pre-cue baseline PLV and post-cue maximal
PLV was compared using a two-tailed paired t test.

Next, we calculated the PLV for correct and incorrect trials. To account for the
difference in the number of correct (252) and incorrect (71) trials, the PLV for
correct trials was calculated using 71 trials that were randomly drawn (without
replacement) from all correct trials. This resampling procedure was repeated
200 times and the average of the resulting PLV vales was used as the final result.
To compare the PLV between correct and incorrect conditions, we used a
permutation method. In each permutation, 71 trials were randomly selected
(without replacement) for correct and incorrect conditions, respectively, from a
pool of all trials. Then a null distribution of permutated PLV differences between
correct and incorrect conditions was obtained by repeating the permutation 1000
times. The mean and standard derivation of this null distribution was calculated
with normal curve fitting (Matlab’s normfit.m). Finally, a z score map of the
real PLV difference was calculated by subtracting the mean and then dividing
by the standard derivation.

In addition to comparing the PLV between correct and incorrect directly, we
examined whether behavioral performance (correct rate) was correlated with the
strength of PLV. To do so, a subset of 71 trials were randomly extracted from the
pool of all trials. Because the number of trials affects the PLV, we chose the number
of 71, such that the resulting PLV value is comparable to those in the correct and
incorrect comparison. For this subset of trials, we calculated the correct rate and
average PLV within the significant time—frequency window that was obtained from
correct versus incorrect comparison. This resampling procedure was repeated
10,000 times. Next, we sorted correct rates then binned them into 10 equally spaced
bins, and the mean PLV was calculated for each bin. The correlation between
correct rate (center of each bin) and PLV was examined using Spearman
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correlation analysis. To estimate a confidence interval of this correlation, the
correlation analysis was performed 1000 times.

Cross-frequency coupling analysis. To examine the cross-frequency coupling, we
adopted the phase-amplitude MI method38. MI is a measure of the entropy of the
phase-amplitude plot obtained by binning high-frequency amplitude values by
low-frequency phases. The phase time series were obtained for frequencies from
1 to 13 Hz (step: 0.5 Hz; bandwidth: 2 Hz) for STG/PC. The STG/PC amplitude
time series were obtained for frequencies from 13 to 200 Hz (step: 2 Hz; bandwidth
increases linearly from 4 to 50 Hz). To evaluate the PAC, the phase and amplitude
time series were segmented into time windows of [—5, 5] s relative to auditory
cue onset. The number of bins used for MI calculation was 20. The normalized MI
(z score) was calculated using a surrogate method’?. Surrogate data were generated
by shifting either the phase time series or the amplitude time series using Matlab’s
circshift.m function. The MI was then calculated for the surrogate data. We
calculated 200 surrogate MlIs, resulting in a null distribution of MI values. The
mean and standard deviation of this distribution was calculated using Matlab’s
normfilt.m. Finally, the z score of the real MI was calculated by subtracting the
mean of the distribution and then dividing by the standard deviation.

To examine the MI change induced by the auditory cue, the MI was calculated
for pre-cue ([—5, 0] s before cue) and post-cue ([0, 5] s after cue), separately. The
MI difference between pre- and post-cue was examined using a permutation-based
method. For each permutation, the pre- and post-cue data for each trial was
switched randomly. Then the MI for permuted pre- and post-cue conditions were
calculated as described above. A distribution of permuted difference of normalized
MI between two conditions was obtained by repeating the procedure 200 times.
Thus a z score and its corresponding p value of the real normalized MI difference
were calculated by subtracting the distribution mean from the real MI difference,
then dividing by the standard deviation of the distribution. The distribution was
pooled across all phase and amplitude frequencies.

The MI difference between correct and incorrected trials for the post-cue
time window was examined using a similar permutation method. In each
permutation, instead of switching randomly the pre- and post-cue labels for
each trial, all correct and incorrect trials were pooled together, and the trial
labels were shuffled. Since the number of trials differs between correct and
incorrect, we used normalized MI values instead of raw MI values. A z score map of
the real difference in MI between two conditions were calculated from the
permuted MI difference distribution as described above. Of note, multiple
comparisons in the MI analysis were performed for MI and comparison between
conditions, i.e., pre-cue versus post-cue and correct versus incorrect, respectively,
using the FDR method.

To compare cue-induced amplitude change between correct and incorrect trials,
the amplitude epochs of the concatenated time series were averaged across trials
within each condition and baseline corrected. A null distribution of permuted
between-condition differences was constructed by shuffling condition labels across
trials. For each permutation, the amplitude change was calculated for both
conditions and these were subtracted from each other. By repeating the above
procedure 1000 times, we obtained a null distribution of amplitude change
differences. To calculate the z score of the real amplitude change, the mean of the
null distribution was subtracted from it, and the result was further divided by
the standard derivation of the distribution.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data and code that support the findings of this study are available from the
corresponding author upon reasonable request.
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